The Retention of Lamellibranch Larvae in the Niantic Estuary

BY

JOHNES K. MOORE²

AND

NELSON MARSHALL

Graduate School of Oceanography University of Rhode Island, Kingston, Rhode Island 02881

(I Map)

MARSHALL & WHEELER (1965) found that phytoplankton were most abundant in the inner stretches of the Niantic estuary; *i. e.*, on the upriver side of the shoals that set off the estuarine basin from the outer Bay (see Map). Phytoplankton concentrations, somewhat less than those occurring in the basin and commonly different in composition, were also found in the Bay, while numbers generally decreased over the shoals. Conditions favoring reproduction in the inner estuary, particularly for the dinoflagellates so numerous there, plus the general lack of dispersal from this semi-enclosed area may account for much of the abundance observed in the basin area.

Data gathered by the senior author on the dispersal of common planktonic lamellibranch larvae show little or nothing when examined for correlations with data on light, depth, salinity and stage of tide. However, on noting the distributions of each species on early dates of the summer spawning season, it is clear that the larvae are consistently most abundant in the basin and upriver stations in spite of extreme irregularities in other respects (Table 1). In this way the larval distributions grossly parallel those of the phytoplankton. For these planktonic larvae it seems unlikely that this distribution is the direct result of a concentrated spawning activity in the inner estuary. The spawning bay scallops, Aequipecten irradians, are concentrated on the shoals. The spawning oysters, Crassostrea virginica, are scattered on the intertidal rocks throughout the estuary. The shipworm, Teredo, is ubiquitous but may be most abundant just inshore from the inlet where there are many docks and pilings. The minute pelecypod identified as *Mysella (Rochefortia) planulata* is thought to be ubiquitous, judging from observations of PHELPS (1964) on a nearby estuary.

MARSHALL & WHEELER (1965) suggested that there might be a differential tidal effect with the flood being more effective than the ebb in the transport of phytoplankton across the shoals. This may be even more significant in the distribution of the planktonic larvae observed and perhaps for holoplankton as well. At the beginning of the flood less than a foot of water covers the shoals. On the flooding tide, waters of relatively high salinities come in from the Bay, cross the shoals and apparently move up estuary along the bottom. With the ebb, surface waters from the basin cross the shoals and move seaward but may tend to remain near the surface. Waters in the Bay, semienclosed by headlands, are not immediately swept from the area, so these surface waters may return on the following flood. This simple effect should carry plankton well into the estuary and tend to keep them there. It would tend to be operative irrespective of the vertical movements of the plankton unless they were strongly grouped toward the surface.

The flushing of the estuary tends to counter the hydrographic effect just described. Using runoff data from U. S. Geological Survey Water supply records, it is calculated, with the method of KETCHUM (1951), that 25 days are required for water entering from the tributaries to reach the Bay during times of low runoff such as characterize the spawning period. This does not seem strong enough to counter a tidal mechanism but it may be sufficient to account for the numbers of larvae in the Bay late in the summer.

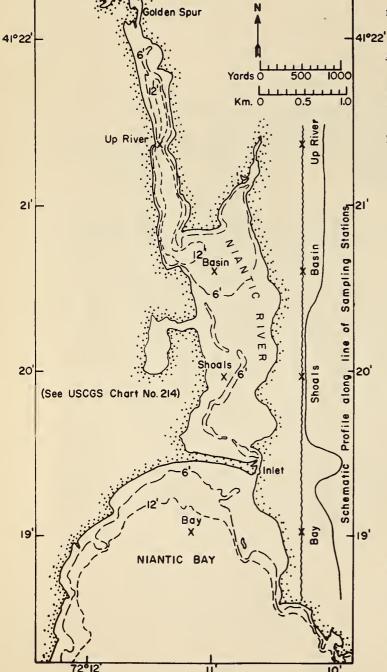
¹ From work partially supported by Contract AT(30-1)2678 with the Atomic Energy Commission and by the National Science Foundation.

² Present address: Salem State College, Salem, Massachusetts 01970

Table 1

The number of lamellibranch larvae per m³ as sampled at four stations along the axis of the Niantic estuary during the Summer 1963. See Map for station locations³.

	Mysella planulata (Stimpson, 1851)		Teredo navalis Linnaeus, 1758			Crassostrea virginica (GMELIN, 1791)		Aequipecten irradians (LAMARCK, 1819)				
Date	Bay	Shoals	Basin and Upriver	Bay	Shoals	Basin and Upriver	Bay	Shoals	Basin and Upriver	Bay	Shoals	Basin and Upriver
10 June	4		422	2		39	0		7	0		0
14 June	6	0	710	6	0	62	0	0	1	0	0	7
21 June	2	232	650	6	0	18	0	0	0	0	0	2
1 July	4	32	1416	24	0	62	6	4	9	2	4	6916
8 July	2	88	2222	6	12	36	0	0	11	0	0	37
15 July	54	124	9542	10	0	39	0	0	6	0	0	9
22 July	6	440	2218	56	60	39	4	4	6	0	4	22
29 July	154	304	764	22	180	56	4	20	15	2	0	21
6 August	160	112	244	143	16	10	12	16	23	0	8	0
12 August	84	148	690	42	60	41	32	72	169	0	32	31
15 August	36	52	472	46	64	74	20	56	188	14	20	59
26 August	22	0	95	74	4	39	4	0	4	8	0	546
3 September	58	24	31	64	12	33	16	0	5	0	0	17
18 September	10	4	18	4	0	5	0	0	0	0	0	0


³ Samples from both the surface and off the bottom were taken at the Bay, Basin and Upriver stations. Since differences did not follow significant patterns they are averaged in this presentation. For the same reason Basin and Upriver data are averaged.

72

10

Table 2

 Σ - τ values as observed along the axis of the Niantic estuary during the lamellibranch larvae sampling, Summer 1963. For each date and station the upper reading is for the upper depth, the lower reading for the lower depths. See Map for station locations and approximate total depths.

Date	Station								
	Bay	Shoals	Basin	Uprive					
14 June	21.528 22.279	19.738	16.505 21.523	16.20 21.25					
21 June	21.282 22.052	21.705	20.173 21.151	18.69 21.48					
1 July	20.063 21.408	18.973	18.074 20.317	18.16 20.47					
8 July	21.224 21.900	21.324	20.261 21.032	19.17 21.18					
15 July	20.888 21.604	20.256	20.211 20.856	19.34 20.93					
22 July	21.528 21.922	21.509	19.176 21.039	18.13 21.00					
29 July	20.292 21.429	19.106	18.895 20.306	17.94 20.42					
6 Aug.	21.022 21.446	20.628	19.500 20.241	18.67 20.35					
12 Aug.	20.632 21.560	19.837	20.269 20.712	19.74 20.84					
15 Aug.	21.355 21.672	20.349	20.517 21.079	19.72 21.02					
26 Aug.	21.782 22.044	21.011	20.207 20.462	20.30 21.01					
3 Sept.	21.464 22.643	21.494	21.042 21.384	20.56 21.45					
18 Sept.	22.301 22.458	22.272	21.833 22.211	21.61 22.25					

LITERATURE CITED

Кетсним, В. Н.

- 1951. The exchanges of fresh and salt waters in tidal estuaries. Journ. Mar. Res. 10: 18 - 38
- MARSHALL, NELSON & BERNICE M. WHEELER
- 1965. Role of the coastal and upper estuarine waters contributing phytoplankton to the shoals of the Niantic estuary. Ecology 46: 665 - 673

PHELPS, D. K.

1964. Functional relationships of benthos in a coastal lagoon. Ph. D. thesis, Univ. Rhode Island Library.